Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Food Funct ; 14(15): 7053-7065, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37449680

RESUMO

Vitamin A, iron, and zinc deficiencies are major nutritional inadequacies in sub-Saharan Africa and disproportionately affect women and children. Biotechnology strategies have been tested to individually improve provitamin A carotenoid or mineral content and/or bioaccessibility in staple crops including sorghum (Sorghum bicolor). However, concurrent carotenoid and mineral enhancement has not been thoroughly assessed and antagonism between these chemical classes has been reported. This work evaluated two genetically engineered constructs containing a suite of heterologous genes to increase carotenoid stability and pathway flux, as well as phytase to catabolize phytate and increase mineral bioaccessibility. Model porridges made from transgenic events were evaluated for carotenoid and mineral content as well as bioaccessibility. Transgenic events produced markedly higher amounts of carotenoids (26.4 µg g-1 DW) compared to null segregants (4.2 µg g-1 DW) and wild-type control (Tx430; 3.7 µg g-1 DW). Phytase activation by pre-steeping flour resulted in significant phytate reduction (9.4 to 4.2 mg g-1 DW), altered the profile of inositol phosphate catabolites, and reduced molar ratios of phytate to iron (16.0 to 4.1), and zinc (19.0 to 4.9) in engineered material, suggesting improved mineral bioaccessibility. Improved phytate : mineral ratios did not significantly affect micellarization and bioaccessible provitamin A carotenoids were over 23 times greater in transgenic events compared to corresponding null segregants and wild-type controls. A 200 g serving of porridge made with these transgenic events provide an estimated 53.7% of a 4-8-year-old child's vitamin A estimated average requirement. These data suggest that combinatorial approaches to enhance micronutrient content and bioaccessibility are feasible and warrant further assessment in human studies.


Assuntos
6-Fitase , Sorghum , Criança , Feminino , Humanos , Pré-Escolar , Provitaminas/metabolismo , Sorghum/química , Vitamina A/metabolismo , Ácido Fítico/metabolismo , 6-Fitase/genética , 6-Fitase/metabolismo , Carotenoides/metabolismo , Minerais/metabolismo , Ferro/metabolismo , Zinco/metabolismo
2.
Front Plant Sci ; 14: 1151762, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063202

RESUMO

The successful employment of morphogenic regulator genes, Zm-Baby Boom (ZmBbm) and Zm-Wuschel2 (ZmWus2), for Agrobacterium-mediated transformation of maize (Zea mays L.) and sorghum (Sorghum bicolor L.) has been reported to improve transformation by inducing rapid somatic embryo formation. Here, we report two morphogenic gene-mediated wheat transformation methods, either with or without morphogenic and marker gene excision. These methods yield independent-transformation efficiency up to 58% and 75%, respectively. In both cases, the tissue culture duration for generating transgenic plants was significantly reduced from 80 to nearly 50 days. In addition, the transformation process was significantly simplified to make the procedure less labor-intensive, higher-throughput, and more cost-effective by eliminating the requirement for embryonic axis excision, bypassing the necessity for prolonged dual-selection steps for callus formation, and obviating the prerequisite of cytokinin for shoot regeneration. Furthermore, we have demonstrated the flexibility of the methods and generated high-quality transgenic events across multiple genotypes using herbicide (phosphinothricin, ethametsulfuron)- and antibiotic (G418)-based selections.

3.
Commun Biol ; 5(1): 344, 2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35410430

RESUMO

For many important crops including sorghum, use of CRISPR/Cas technology is limited not only by the delivery of the gene-modification components into a plant cell, but also by the ability to regenerate a fertile plant from the engineered cell through tissue culture. Here, we report that Wuschel2 (Wus2)-enabled transformation increases not only the transformation efficiency, but also the CRISPR/Cas-targeted genome editing frequency in sorghum (Sorghum bicolor L.). Using Agrobacterium-mediated transformation, we have demonstrated Wus2-induced direct somatic embryo formation and regeneration, bypassing genotype-dependent callus formation and significantly shortening the tissue culture cycle time. This method also increased the regeneration capacity that resulted in higher transformation efficiency across different sorghum varieties. Subsequently, advanced excision systems and "altruistic" transformation technology have been developed to generate high-quality morphogenic gene-free and/or selectable marker-free sorghum events. Finally, we demonstrate up to 6.8-fold increase in CRISPR/Cas9-mediated gene dropout frequency using Wus2-enabled transformation, compared to without Wus2, across various targeted loci in different sorghum genotypes.


Assuntos
Edição de Genes , Sorghum , Sistemas CRISPR-Cas , Grão Comestível/genética , Edição de Genes/métodos , Plantas Geneticamente Modificadas/genética , Regeneração/genética , Sorghum/genética
4.
Plant Biotechnol J ; 20(5): 977-990, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35015927

RESUMO

We have discovered a novel bacterium, Ochrobactrum haywardense H1 (Oh H1), which is capable of efficient plant transformation. Ochrobactrum is a new host for Agrobacterium-derived vir and T-DNA-mediated transformation. Oh H1 is a unique, non-phytopathogenic species, categorized as a BSL-1 organism. We engineered Oh H1 with repurposed Agrobacterium virulence machinery and demonstrated Oh H1 can transform numerous dicot species and at least one monocot, sorghum. We generated a cysteine auxotrophic Oh H1-8 strain containing a binary vector system. Oh H1-8 produced transgenic soybean plants with an efficiency 1.6 times that of Agrobacterium strain AGL1 and 2.9 times that of LBA4404Thy-. Oh H1-8 successfully transformed several elite Corteva soybean varieties with T0 transformation frequency up to 35%. In addition to higher transformation efficiencies, Oh H1-8 generated high-quality, transgenic events with single-copy, plasmid backbone-free insertion at frequencies higher than AGL1. The SpcN selectable marker gene is excised using a heat shock-inducible excision system resulting in marker-free transgenic events. Approximately, 24.5% of the regenerated plants contained only a single copy of the transgene and contained no vector backbone. There were no statistically significant differences in yield comparing T3 null-segregant lines to wild-type controls. We have demonstrated that Oh H1-8, combined with spectinomycin selection, is an efficient, rapid, marker-free and yield-neutral transformation system for elite soybean.


Assuntos
Glycine max , Ochrobactrum , Agrobacterium tumefaciens/genética , Vetores Genéticos , Ochrobactrum/genética , Plantas Geneticamente Modificadas , Glycine max/genética , Transformação Genética
5.
Plant J ; 106(3): 817-830, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33595147

RESUMO

Cowpea (Vigna unguiculata (L.) Walp.) is one of the most important legume crops planted worldwide, but despite decades of effort, cowpea transformation is still challenging due to inefficient Agrobacterium-mediated transfer DNA delivery, transgenic selection and in vitro shoot regeneration. Here, we report a highly efficient transformation system using embryonic axis explants isolated from imbibed mature seeds. We found that removal of the shoot apical meristem from the explants stimulated direct multiple shoot organogenesis from the cotyledonary node tissue. The application of a previously reported ternary transformation vector system provided efficient Agrobacterium-mediated gene delivery, while the utilization of spcN as selectable marker enabled more robust transgenic selection, plant recovery and transgenic plant generation without escapes and chimera formation. Transgenic cowpea plantlets developed exclusively from the cotyledonary nodes at frequencies of 4% to 37% across a wide range of cowpea genotypes. CRISPR/Cas-mediated gene editing was successfully demonstrated. The transformation principles established here could also be applied to other legumes to increase transformation efficiencies.


Assuntos
Edição de Genes/métodos , Sementes/genética , Vigna/genética , Agrobacterium/genética , Cotilédone/genética , Cotilédone/crescimento & desenvolvimento , Cotilédone/metabolismo , Técnicas de Transferência de Genes , Genoma de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Transformação Genética , Vigna/crescimento & desenvolvimento , Vigna/metabolismo
6.
J Synchrotron Radiat ; 28(Pt 1): 131-145, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33399562

RESUMO

In this paper the back-side-illuminated Percival 2-Megapixel (P2M) detector is presented, along with its characterization by means of optical and X-ray photons. For the first time, the response of the system to soft X-rays (250 eV to 1 keV) is presented. The main performance parameters of the first detector are measured, assessing the capabilities in terms of noise, dynamic range and single-photon discrimination capability. Present limitations and coming improvements are discussed.

7.
Front Plant Sci ; 11: 579524, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33133118

RESUMO

Agrobacterium-mediated transformation of canola (Brassica napus) via hypocotyl segments has been a commonly used method for the past 30 years. While the hypocotyl-based method is well-established, it is not readily adapted to elite germplasm and the prolonged process is not ideal for a production transformation setting. We developed an Agrobacterium-mediated transformation method based on epicotyl and higher stem (internodal) segments that is efficient, rapid and amenable for high-throughput transformation and genome editing. The method has been successfully implemented in multiple canola genotypes. The method appears to be genotype-independent, with varying transformation efficiencies. Internodal segment transformation was used to generate transgenic events as well as CRISPR-Cas9-mediated frameshift gene knockouts.

8.
Front Plant Sci ; 11: 1298, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32983193

RESUMO

Use of the morphogenic genes Baby Boom (Bbm) and Wuschel2 (Wus2), along with new ternary constructs, has increased the genotype range and the type of explants that can be used for maize transformation. Further optimizing the expression pattern for Bbm/Wus2 has resulted in rapid maize transformation methods that are faster and applicable to a broader range of inbreds. However, expression of Bbm/Wus2 can compromise the quality of regenerated plants, leading to sterility. We reasoned excising morphogenic genes after transformation but before regeneration would increase production of fertile T0 plants. We developed a method that uses an inducible site-specific recombinase (Cre) to excise morphogenic genes. The use of developmentally regulated promoters, such as Ole, Glb1, End2, and Ltp2, to drive Cre enabled excision of morphogenic genes in early embryo development and produced excised events at a rate of 25-100%. A different strategy utilizing an excision-activated selectable marker produced excised events at a rate of 53-68%; however, the transformation frequency was lower (13-50%). The use of inducible heat shock promoters (e.g. Hsp17.7, Hsp26) to express Cre, along with improvements in tissue culture conditions and construct design, resulted in high frequencies of T0 transformation (29-69%), excision (50-97%), usable quality events (4-15%), and few escapes (non-transgenic; 14-17%) in three elite maize inbreds. Transgenic events produced by this method are free of morphogenic and marker genes.

9.
Plant Biotechnol J ; 17(8): 1636-1645, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30706638

RESUMO

An efficient Agrobacterium-mediated site-specific integration (SSI) technology using the flipase/flipase recognition target (FLP/FRT) system in elite maize inbred lines is described. The system allows precise integration of a single copy of a donor DNA flanked by heterologous FRT sites into a predefined recombinant target line (RTL) containing the corresponding heterologous FRT sites. A promoter-trap system consisting of a pre-integrated promoter followed by an FRT site enables efficient selection of events. The efficiency of this system is dependent on several factors including Agrobacterium tumefaciens strain, expression of morphogenic genes Babyboom (Bbm) and Wuschel2 (Wus2) and choice of heterologous FRT pairs. Of the Agrobacterium strains tested, strain AGL1 resulted in higher transformation frequency than strain LBA4404 THY- (0.27% vs. 0.05%; per cent of infected embryos producing events). The addition of morphogenic genes increased transformation frequency (2.65% in AGL1; 0.65% in LBA4404 THY-). Following further optimization, including the choice of FRT pairs, a method was developed that achieved 19%-22.5% transformation frequency. Importantly, >50% of T0 transformants contain the desired full-length site-specific insertion. The frequencies reported here establish a new benchmark for generating targeted quality events compatible with commercial product development.


Assuntos
Agrobacterium tumefaciens , Recombinação Genética , Zea mays/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas
10.
Methods Mol Biol ; 1931: 185-196, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30652291

RESUMO

Sorghum has been considered a recalcitrant crop for tissue culture and genetic transformation. A breakthrough in Agrobacterium-mediated sorghum transformation was achieved with the use of super-binary cointegrate vectors based on plasmid pSB1. However, even with pSB1, transformation capability was restricted to certain sorghum genotypes, excluding most of the important African sorghum varieties. We recently developed a ternary vector system incorporating the pVIR accessory plasmid. The ternary vector system not only doubled the transformation frequency (TF) in Tx430, but also extended the transformation capability into an important African sorghum elite variety.


Assuntos
Grão Comestível/genética , Vetores Genéticos/genética , Sorghum/genética , Transformação Genética/genética , Agrobacterium/genética , Genótipo , Plasmídeos/genética
11.
Curr Top Microbiol Immunol ; 418: 489-507, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29959543

RESUMO

The last decade has seen significant strides in Agrobacterium-mediated plant transformation technology. This has not only expanded the number of crop species that can be transformed by Agrobacterium, but has also made it possible to routinely transform several recalcitrant crop species including cereals (e.g., maize, sorghum, and wheat). However, the technology is limited by the random nature of DNA insertions, genotype dependency, low frequency of quality events, and variation in gene expression arising from genomic insertion sites. A majority of these deficiencies have now been addressed by improving the frequency of quality events, developing genotype-independent transformation capability in maize, developing an Agrobacterium-based site-specific integration technology for precise gene targeting, and adopting Agrobacterium-delivered CRISPR-Cas genes for gene editing. These improved transformation technologies are discussed in detail in this chapter.


Assuntos
Agrobacterium/genética , Biotecnologia/métodos , Produtos Agrícolas/genética , Genoma de Planta/genética , Grão Comestível/genética , Edição de Genes , Marcação de Genes
12.
Plant Mol Biol ; 97(1-2): 187-200, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29687284

RESUMO

KEY MESSAGE: A simple and versatile ternary vector system that utilizes improved accessory plasmids for rapid maize transformation is described. This system facilitates high-throughput vector construction and plant transformation. The super binary plasmid pSB1 is a mainstay of maize transformation. However, the large size of the base vector makes it challenging to clone, the process of co-integration is cumbersome and inefficient, and some Agrobacterium strains are known to give rise to spontaneous mutants resistant to tetracycline. These limitations present substantial barriers to high throughput vector construction. Here we describe a smaller, simpler and versatile ternary vector system for maize transformation that utilizes improved accessory plasmids requiring no co-integration step. In addition, the newly described accessory plasmids have restored virulence genes found to be defective in pSB1, as well as added virulence genes. Testing of different configurations of the accessory plasmids in combination with T-DNA binary vector as ternary vectors nearly doubles both the raw transformation frequency and the number of transformation events of usable quality in difficult-to-transform maize inbreds. The newly described ternary vectors enabled the development of a rapid maize transformation method for elite inbreds. This vector system facilitated screening different origins of replication on the accessory plasmid and T-DNA vector, and four combinations were identified that have high (86-103%) raw transformation frequency in an elite maize inbred.


Assuntos
Vetores Genéticos , Transformação Genética , Zea mays/genética , Agrobacterium tumefaciens/genética , DNA Bacteriano , DNA de Plantas , Plasmídeos , Origem de Replicação
13.
Plant Biotechnol J ; 16(7): 1388-1395, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29327444

RESUMO

Sorghum is the fifth most widely planted cereal crop in the world and is commonly cultivated in arid and semi-arid regions such as Africa. Despite its importance as a food source, sorghum genetic improvement through transgenic approaches has been limited because of an inefficient transformation system. Here, we report a ternary vector (also known as cohabitating vector) system using a recently described pVIR accessory plasmid that facilitates efficient Agrobacterium-mediated transformation of sorghum. We report regeneration frequencies ranging from 6% to 29% in Tx430 using different selectable markers and single copy, backbone free 'quality events' ranging from 45% to 66% of the total events produced. Furthermore, we successfully applied this ternary system to develop transformation protocols for popular but recalcitrant African varieties including Macia, Malisor 84-7 and Tegemeo. In addition, we report the use of this technology to develop the first stable CRISPR/Cas9-mediated gene knockouts in Tx430.


Assuntos
Agrobacterium/genética , Engenharia Genética/métodos , Sorghum/genética , Sistemas CRISPR-Cas , Técnicas de Transferência de Genes , Marcadores Genéticos/genética , Vetores Genéticos/genética , Plantas Geneticamente Modificadas/genética , Transformação Genética/genética
14.
Proc Natl Acad Sci U S A ; 113(39): 11040-5, 2016 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-27621466

RESUMO

Micronutrient deficiencies are common in locales where people must rely upon sorghum as their staple diet. Sorghum grain is seriously deficient in provitamin A (ß-carotene) and in the bioavailability of iron and zinc. Biofortification is a process to improve crops for one or more micronutrient deficiencies. We have developed sorghum with increased ß-carotene accumulation that will alleviate vitamin A deficiency among people who rely on sorghum as their dietary staple. However, subsequent ß-carotene instability during storage negatively affects the full utilization of this essential micronutrient. We determined that oxidation is the main factor causing ß-carotene degradation under ambient conditions. We further demonstrated that coexpression of homogentisate geranylgeranyl transferase (HGGT), stacked with carotenoid biosynthesis genes, can mitigate ß-carotene oxidative degradation, resulting in increased ß-carotene accumulation and stability. A kinetic study of ß-carotene degradation showed that the half-life of ß-carotene is extended from less than 4 wk to 10 wk on average with HGGT coexpression.


Assuntos
Alimentos Fortificados , Sorghum/metabolismo , Vitamina E/metabolismo , beta Caroteno/metabolismo , Cromatografia Líquida de Alta Pressão , DNA Bacteriano/genética , Endosperma/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Sementes/metabolismo , Sorghum/enzimologia , Sorghum/genética
15.
Sci Rep ; 6: 28625, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27350167

RESUMO

The MinION is a portable single-molecule DNA sequencing instrument that was released by Oxford Nanopore Technologies in 2014, producing long sequencing reads by measuring changes in ionic flow when single-stranded DNA molecules translocate through the pores. While MinION long reads have an error rate substantially higher than the ones produced by short-read sequencing technologies, they can generate de novo assemblies of microbial genomes, after an initial correction step that includes alignment of Illumina sequencing data or detection of overlaps between Oxford Nanopore reads to improve accuracy. In this study, MinION reads were generated from the multi-chromosome genome of Agrobacterium tumefaciens strain LBA4404. Errors in the consensus two-directional (sense and antisense) "2D" sequences were first characterized by way of comparison with an internal reference assembly. Both Illumina-based correction and self-correction were performed and the resulting corrected reads assembled into high-quality hybrid and non-hybrid assemblies. Corrected read datasets and assemblies were subsequently compared. The results shown here indicate that both hybrid and non-hybrid methods can be used to assemble Oxford Nanopore reads into informative multi-chromosome assemblies, each with slightly different outcomes in terms of contiguity and accuracy.


Assuntos
Agrobacterium tumefaciens/genética , Bases de Dados Genéticas
16.
Sensors (Basel) ; 16(6)2016 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-27338399

RESUMO

Ultraviolet (UV) studies in astronomy, cosmology, planetary studies, biological and medical applications often require precision detection of faint objects and in many cases require photon-counting detection. We present an overview of two approaches for achieving photon counting in the UV. The first approach involves UV enhancement of photon-counting silicon detectors, including electron multiplying charge-coupled devices and avalanche photodiodes. The approach used here employs molecular beam epitaxy for delta doping and superlattice doping for surface passivation and high UV quantum efficiency. Additional UV enhancements include antireflection (AR) and solar-blind UV bandpass coatings prepared by atomic layer deposition. Quantum efficiency (QE) measurements show QE > 50% in the 100-300 nm range for detectors with simple AR coatings, and QE ≅ 80% at ~206 nm has been shown when more complex AR coatings are used. The second approach is based on avalanche photodiodes in III-nitride materials with high QE and intrinsic solar blindness.

17.
Plant Cell Rep ; 34(5): 745-54, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25558819

RESUMO

KEY MESSAGE: Improving Agrobacterium -mediated transformation frequency and event quality by increasing binary plasmid copy number and appropriate strain selection is reported in an elite maize cultivar. Agrobacterium-mediated maize transformation is a well-established method for gene testing and for introducing useful traits in a commercial biotech product pipeline. To develop a highly efficient maize transformation system, we investigated the effect of two Agrobacterium tumefaciens strains and three different binary plasmid origins of replication (ORI) on transformation frequency, vector backbone insertion, single copy event frequency (percentage of events which are single copy for all transgenes), quality event frequency (percentage of single copy events with no vector backbone insertions among all events generated; QE) and usable event quality frequency (transformation frequency times QE frequency; UE) in an elite maize cultivar PHR03. Agrobacterium strain AGL0 gave a higher transformation frequency, but a reduced QE frequency than LBA4404 due to a higher number of vector backbone insertions. Higher binary plasmid copy number positively correlated with transformation frequency and usable event recovery. The above findings can be exploited to develop high-throughput transformation protocols, improve the quality of transgenic events in maize and other plants.


Assuntos
Agrobacterium tumefaciens/genética , Plasmídeos/genética , Transformação Genética , Zea mays/genética , Agrobacterium tumefaciens/fisiologia , Variações do Número de Cópias de DNA , DNA Bacteriano/genética , Vetores Genéticos , Plantas Geneticamente Modificadas , Origem de Replicação , Especificidade da Espécie , Transgenes
18.
Plant Cell Rep ; 33(10): 1767-77, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25063322

RESUMO

KEY MESSAGE: An improved Agrobacterium -mediated transformation protocol is described for a recalcitrant commercial maize elite inbred with optimized media modifications and AGL1. These improvements can be applied to other commercial inbreds. This study describes a significantly improved Agrobacterium-mediated transformation protocol in a recalcitrant commercial maize elite inbred, PHR03, using optimal co-cultivation, resting and selection media. The use of green regenerative tissue medium components, high copper and 6-benzylaminopurine, in resting and selection media dramatically increased the transformation frequency. The use of glucose in resting medium further increased transformation frequency by improving the tissue induction rate, tissue survival and tissue proliferation from immature embryos. Consequently, an optimal combination of glucose, copper and cytokinin in the co-cultivation, resting and selection media resulted in significant improvement from 2.6 % up to tenfold at the T0 plant level using Agrobacterium strain LBA4404 in transformation of PHR03. Furthermore, we evaluated four different Agrobacterium strains, LBA4404, AGL1, EHA105, and GV3101 for transformation frequency and event quality. AGL1 had the highest transformation frequency with up to 57.1 % at the T0 plant level. However, AGL1 resulted in lower quality events (defined as single copy for transgenes without Agrobacterium T-DNA backbone) when compared to LBA4404 (30.1 vs 25.6 %). We propose that these improvements can be applied to other recalcitrant commercial maize inbreds.


Assuntos
Agrobacterium/genética , Transformação Genética/fisiologia , Zea mays/genética , Agrobacterium/fisiologia , DNA Bacteriano/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/microbiologia , Transformação Genética/genética , Zea mays/microbiologia
19.
Appl Opt ; 51(3): 365-9, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22270664

RESUMO

We have used molecular beam epitaxy (MBE) based delta-doping technology to demonstrate nearly 100% internal quantum efficiency (QE) on silicon electron-multiplied charge-coupled devices (EMCCDs) for single photon counting detection applications. We used atomic layer deposition (ALD) for antireflection (AR) coatings and achieved atomic-scale control over the interfaces and thin film materials parameters. By combining the precision control of MBE and ALD, we have demonstrated more than 50% external QE in the far and near ultraviolet in megapixel arrays. We have demonstrated that other important device performance parameters such as dark current are unchanged after these processes. In this paper, we briefly review ultraviolet detection, report on these results, and briefly discuss the techniques and processes employed.


Assuntos
Dispositivos Ópticos , Teoria Quântica , Radiometria/instrumentação , Raios Ultravioleta , Elétrons , Desenho de Equipamento , Fótons , Silício/química
20.
Rev Sci Instrum ; 82(4): 043102, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21528990

RESUMO

In this paper we present our system design and methodology for making absolute quantum efficiency (QE) measurements through the vacuum ultraviolet (VUV) and verify the system with delta-doped silicon CCDs. Delta-doped detectors provide an excellent platform to validate measurements through the VUV due to their enhanced UV response. The requirements for measuring QE through the VUV are more strenuous than measurements in the near UV and necessitate, among other things, the use of a vacuum monochromator, good dewar chamber vacuum to prevent on-chip condensation, and more stringent handling requirements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA